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1 Materials and Methods

1.1 Sampling
This study takes advantage of the numerous tissue samples accessioned in natural history museums across
the United States and Australia. In this study, we sampled tissues from 8 museums: Australian Museum,
Cornell University Museum of Vertebrates, Australian Biological Tissue Collection, Northern Territory Mu-
seum, Queensland Museum, South Australian Museum, University of Michigan Museum of Zoology, and
Western Australian Museum. Species boundaries in the genus Ctenotus have been subject to sufficient revi-
sion (1), and, like many squamate species, many Ctenotus species contain multiple, cryptic species. As such,
our sampling strategy was to sample as broadly and densely across species ranges. As for many major
geographic regions, sampling across Australia is non-random in space. For example, there are large chunks
of the Australian arid zone that have been minimally sampled. Given these limitations, we tried to sample
randomly throughout the range, maximizing our geographic coverage. That said, we acknowledge that
biases certainly exist in such a dataset.

1.2 Library Preparation and Sequencing
We extracted DNA from liver and tail tissues using a Qiagen DNeasy kit and then measured DNA quan-
tity and quality both using a ThermoFisher QuBit dsDNA HS Assay Kit (catalog number: Q32854) and a
ThermoScientific NanoDrop spectrophotometer 2000. Anywhere from 200 ng to 1000 ng of DNA was used
for preparation of ddRAD libraries. In silico experiments using the Anolis carolinensis genome as a reference
showed that the enzymes EcoRI and MspI gave about 20K fragments in the 150 - 250 bp range. For the
purposes of this experiment, these enzymes and this size range resulted in the right balance between the
number of loci across the genome and projected coverage at any given locus. Thus, we digested DNA with
the restriction enzymes EcoRI and MspI. Following digestion, we again quantified DNA using the QuBit.
We then barcoded each library uniquely, pooled across 24 individuals, and size-selected (150 - 250 bp) these
pools using a PippinPrep (2). Each pool was then amplified using Phusion HotStart Taq. Each amplification
was done across 12 separate PCR reactions to reduce the amount of PCR bias that was introduced in any
single reaction. We then pooled across 4 of the 24-individual pools to create a final pool of 96-individuals.
The Center for Applied Genomics at the Hospital for Sick Children in Toronto sequenced each pool across a
single 100 PE run of an Illumina HiSeq2500, for a total of six lanes.

1.3 Testing Methods for ddRAD data assembly
At the time of analysis, we were unaware of any papers that compared across ddRAD assembly methods
to test which ddRAD assembly method performs best. As such, we tested three different methods for
assembling ddRAD data to identify what method would best enable population genetic analyses. We tried
(1) clustering the reverse read from read pairs, (2) Rainbow, and (3) pyRAD (3). For a set of individuals from
a random selection of eight species (N=55), we measured assembly success by using five different metrics:

• the percent of reads used in the original assembly that could be mapped to the assembly, indicated as
‘percentMapped‘,

• the mapping quality of these reads, abbreviated as ‘MAQ‘,

• the percent of read-pairs that mapped as paired reads, indicated as ‘percentPaired‘,

• the percent of read-pairs that only mapped to one location in the assembly, indicated as ‘percentU-
nique‘,

• for every given locus in the assembly, the number of individuals in that species sequenced at that locus
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Across all metrics, higher values reflect better assemblies, and our results suggest Rainbow generates the
best assemblies (Fig. S16). Based on these results, we used Rainbow to assemble all individuals in our data
set.

Scripts used in this analysis are:

• https://github.com/singhal/ct_gen_div/blob/master/R2_assemblies.py

• https://github.com/singhal/ct_gen_div/blob/master/pyrad_assembly.py

• https://github.com/singhal/ct_gen_div/blob/master/rainbow_assemblies.py

• https://github.com/singhal/ct_gen_div/blob/master/evaluate_assembly.py

1.4 Species Delimitation
Because species boundaries in Ctenotus have been subject to revisions and because many species contain
multiple, morphologically-cryptic lineages, our first step was to delimit putative species-level lineages –
or, operational taxonomic units (OTUs). We used a coalescent-based approach (GMYC) that requires an
ultrametric phylogenetic tree of all the individuals that are to be delimited.

To do so, we first trimmed the ddRAD raw reads for both low-quality sequence and adapter sequenc-
ing using Trimmomatic v0.33 (4). The script used was: https://github.com/singhal/ct_gen_div/blob/
master/trimmomatic_reads.py. Here, we trimmed the ends of reads once the average base quality (as mea-
sured in 4bp sliding windows) dropped below a phred33 score of 25. We then discarded any reads that were
less than 36bp long. With these trimmed reads, we generated one assembly per individual using the pro-
gram Rainbow using default parameters (5). Then, we identified homologous ddRAD loci across all individ-
uals. We used vsearch v1.11.1 (6), requiring all putative homologs to share at least 80% similarity. The script
used here was: https://github.com/singhal/ct_gen_div/blob/master/homology_across_species.py.
We then restricted our analyses to only those loci found in at least 60% of individuals. We aligned each
locus individually using MUSCLE v3.8.31 (7) and generated a concatenated alignment across loci. To test
if the method used to infer the phylogeny impacted species delimitation, we used two methods to infer a
phylogeny: RAxML v8.2.0 and FastTree v2.1.8 (8; 9).

To generate these trees, we used the following commands:

/Volumes/heloderma4/sonal/bin/RAxML/raxmlHPC -x 123 -# 100 -p 543 -m GTRGAMMA -f a -n

Ctenotus_bootstrap -s Ctenotus_nuclear_percent0.6.aln.phy

/Volumes/heloderma4/sonal/bin/FastTree -gtr -nt Ctenotus_nuclear_percent0.6.aln.fa >

Ctenotus_nuclear_percent0.6.FastTree

We then used midpoint rooting to root each tree as implemented by the function midpoint in the R pack-
age phangorn (10). Then, to generate an ultrametric tree as required by GMYC, we used TreePL. We con-
strained the root age for the phylogeny to be between 15 and 20 million years based on data from other
phylogenetic analyses of Ctenotus (11). We ran TreePL for a range of λ values (0.001, 0.01, 0.1, 1), finding
that λ=0.1 was the best fit for both trees based on coefficient of variation (CV) results. Then, to define OTUs
within these species, we used a Python-based implementation of GMYC on both the FastTree and RAxML
inferred trees. This implementation of GMYC runs the single-threshold model, which assumes that all spe-
ciation events precede coalescent events. This model tends to outperform the multiple-threshold model
(12). The nodes inferred as the most recent common ancestor for a given OTU were well-supported in this
RAxML tree (Fig. S3A), and trees inferred using FastTree and RAxML resulted in similar OTU delimitations
(Fig. S3B). Based on these results, we used the GMYC-inferred OTUs from RAxML for all subsequent analy-
sis.
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1.5 Measures of Genetic Diversity
The goal of this study is to understand the drivers of genetic diversity. To do so, we calculated genetic
diversity as average pairwise distances (π) three ways:

1. within-population π: we treated each individual as a population. Because we sampled an average of
44K loci per individual, estimating π per individual should yield an accurate estimate of population-
level π. We called SNPs for each individual separately. We then calculated π for each individual and
took the mean π across all individuals in an OTU as our within-population estimate of π.

2. species-wide π: we called SNPs for all individuals in an OTU together. We then calculated π across
all individuals in an OTU using an approach that allows for different levels of missingness across loci
(13).

3. mtDNA π: using a previously published mitochondrial sequence alignment from the locus cytochrome
B (1; 11), we inferred π across all mitochondrial sequences sampled for a given OTU

Scripts used in this analysis are:

• https://github.com/singhal/ct_gen_div/blob/master/align_reads1.py

• https://github.com/singhal/ct_gen_div/blob/master/align_reads2.py

• https://github.com/singhal/ct_gen_div/blob/master/get_vcf_depth_by_ind.py

• https://github.com/singhal/ct_gen_div/blob/master/get_vcf_depth.py

1.5.1 Generating Pseudo-reference Genomes

For each OTU, we created a pseudo-reference genome based on the Rainbow assemblies for each individual
in that OTU. To do so, we used vsearch to cluster contigs across individuals, requiring clustered sequences
to have 97% similarity. We only retained those locus clusters that were well-represented across individuals
to avoid retaining spurious loci; for OTUs sampling two or fewer individuals, we kept all clusters, for OTUs
sampling three to five individuals, we kept all clusters for which representative sequences were found in at
least two individuals, and for all remaining OTUs, we kept all clusters for which representative sequences
were found in at least 30% individuals. This approach was implemented in https://github.com/singhal/

ct_gen_div/blob/master/simpler_homology.py.

1.5.2 Within-population π

These analyses were done at the individual-level. We aligned reads from each individual to its respective
pseudo-reference genome to identify variants. To align reads, we used bwa v0.7.12 (14), fixed mate-pairs
using samtools v1.2 (15), and identified indels and realigned around indels using GATK v3.4 (16). We then
called raw SNPs using samtools and bcftools v1.2, filtering out SNPs that had quality score lower than 20,
and then using the resulting variant set to recalibrate base quality scores in the alignment files with GATK.
Using the recalibrated alignment files, we once again called genotypes, retaining only those invariable and
variable sites that had ≥10× coverage to ensure we could accurately call heterozygous sites. Additionally,
to avoid including collapsed paralogs, we removed sites with ≥3× the median coverage for the individual.
After this step, we dropped four individuals because less than 1 × 105 of their genomic sites had sufficient
coverage to call SNPs. We then calculated π (see 1.5.5) for each individual and found the mean π across
individuals within an OTU.
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1.5.3 Species-wide π

These analyses were done across all individuals in an OTU at once. We aligned reads from each individual
to the pseudo-reference genome to identify variants. To align reads, we used bwa, fixed mate-pairs using
samtools, and identified indels and realigned around indels using GATK. We then called raw SNPs across all
individuals in that OTU using samtools and bcftools, filtering out SNPs that had quality score lower than 20.
We used the resulting variant set to recalibrate base quality scores in the alignment files with GATK. Using
the recalibrated alignment files, we called genotypes across all individuals in an OTU simultaneously. In
the resultant variant file, we set to ’missing’ any site in any individual that had <10× coverage. We then
calculated π (see 1.5.5) across all individuals at once to get species-wide π.

1.5.4 mtDNA π

From the previously published mtDNA alignment, we only used those individuals for which we had a
revised OTU designation – i.e., those individuals that were successfully sequenced for ddRAD data. We
were only able to analyze those OTU for which we had at least two individuals sampled; this reduced our
sampling to 60 OTU. We then calculated π (see 1.5.5) across all individuals at once to get mtDNA π.

1.5.5 Calculating diversity

We calculated three indices of nucleotide diversity: within-population π, species-wide π (13), and mtDNA
π. For these metrics, we used a raw, uncorrected measure for diversity. For nuclear estimates of π, π was
calculated per SNP and then averaged.

Scripts used in this analysis are:

• https://github.com/singhal/ct_gen_div/blob/master/calculate_pi_per_ind_by_ind.py

• https://github.com/singhal/ct_gen_div/blob/master/calculate_pi_per_species.py

1.6 Demographic Analyses

1.6.1 Running ADMIXTURE

For the 42 OTUs for which we sequenced ≥3 individuals, we used the program ADMIXTURE v1.23 to
determine if there was genetic clustering of individuals within OTUs. We used the variant set called across
all individuals, restricting our analyses to only those SNPs that had <33% missing data and then selecting
only one SNP per contig as ADMIXTURE cannot explicitly model linkage disequilibrium across SNPs. We
then ran ADMIXTURE for a range of cluster values (k=1 to n), where n is the number of individuals sampled
for that OTU. We picked the most likely number of clusters by using coefficient of variation (CV) values. We
further visualized our results because occasionally ADMIXTURE will infer a cluster to which no individual
is assigned. In such cases, we adjusted the total number of clusters to reflect only those clusters to which
individuals were assigned.

Scripts used in this analysis are:

• https://github.com/singhal/ct_gen_div/blob/master/vcf_to_admixture.py

• https://github.com/singhal/ct_gen_div/blob/master/run_admixture.py

• https://github.com/singhal/ct_gen_div/blob/master/run_admixture_chooseK.py

1.6.2 Running ANGSD

To infer Tajima’s D for these OTUs, we needed to employ a method that could account for heterogeneous
and low coverage across individuals and sites, thus we used ANGSD v0.910. Further, without complete
genome sequences, inferring demography with just one or two individuals is difficult. Thus, we ran ANGSD
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on only the 42 OTUs for which we sequenced ≥3 individuals. We randomly chose these three individuals
from the most common genetic cluster as identified using ADMIXTURE. We ran ANGSD on subsamples
of the total sample set so that our comparisons across species would be based on matched sample sizes.
Because initial tests suggested that the number of individuals used during SNP calling positively biased the
number of SNPs found (Fig. S2), we repeated our SNP discovery pipeline (see Calculating species-wide π) on
these subsampled data. This approach ensured that our results were not biased across OTUs due to uneven
sampling. Exemplar commands for ANGSD were the following:

angsd -bam list_of_bam_files -doSaf 1 -anc lineage_PRG.fa -GL 2 -P 12 -out lineage_out

-fold 1

misc/realSFS lineage_out.saf.idx -P 12 > lineage_out.sfs

angsd -bam bam.list_of_bam_files -out outFold -doThetas 1 -doSaf 1 -pest lineage_out.sfs

-anc lineage_PRG.fa -GL 2 -fold 1

misc/thetaStat make_bed lineage_out.thetas.gz

misc/thetaStat do_stat lineage_out.thetas.gz -nChr num_of_chr_in_lineage

1.6.3 Running LAMARC

To infer population growth for these OTUs, we used LAMARC on SNP data from any OTUs with three or
more individuals. Again, we subsampled the data to only consider three individuals per OTUs, using the
same sampling used in the ANGSD analyses. We used the revised SNP calls that were done with just 3
individuals per OTUs.

We sampled all SNPs that were more than 70% complete and ran LAMARC in the Bayesian mode using
the F84 mutational model. We adjusted the prior for growth rate (g) to range from [-1000, 10000]; all other
priors were kept as default. We ran 10 chains with 10,000 burn-in iterations followed by 2 chains of 5e6
iterations. Convergence was checked by visually inspecting the output in Tracer (17). The script used in this
analysis is: https://github.com/singhal/ct_gen_div/blob/master/vcf_to_lamarc.py.

1.7 Species Tree
To account for phylogenetic structure in the relationship between predictor variables and genetic diversity,
we first constructed a species tree for these OTUs. To do so, we did the following:

1. We identified homologous loci across the OTU pseudo-reference genomes using VSEARCH, restricting
matches to those with ≥ 80% shared identity or higher. This was implemented in the script https:
//github.com/singhal/ct_gen_div/blob/master/homology_across_species.py. This resulted in
18,816 loci.

2. We then aligned homologous loci across OTUs using MUSCLE v3.8.31 (7). We used the script https:
//github.com/singhal/ct_gen_div/blob/master/make_nuclear_alignment.py

• Some alignments consisted of too few individuals or were quite poor (i.e., as much as 70% of
the alignment consisted of gaps). We retained only those loci that consisted of ≥30% of the indi-
viduals sampled and consisted of ≤30% gaps. In total, we retained 14,187 (75%) of the original
loci.

3. We then inferred gene trees for each locus using RAXML and this script: https://github.com/singhal/
ct_gen_div/blob/master/gene_trees.py. The trees were run unpartitioned using the GTRCAT model
of molecular evolution.

• Poorly resolved nodes were converted to polytomies. ASTRID assumes gene trees have been
inferred accurately and that all nodes are bifurcating. So that we did not give undue confidence
to unresolved or poorly resolved nodes, we changed short bifurcating nodes to polytomies using
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the script: https://github.com/singhal/ct_gen_div/blob/master/gene_trees_polytomize.
py. This used the function di2multi in the R package ape.

4. We then used ASTRID to infer a species tree based on our inferred gene trees. This used the script:
https://github.com/singhal/ct_gen_div/blob/master/make_astrid_astral.py. We used the ‘bionj‘
method, allowing for missing data. We ran ASTRID for 100 bootstraps using a gene-tree bootstrapping
approach, in which each bootstrap consisted of a set of gene trees drawn from the bootstraps of the
gene tree inference. Trees were summarized using sumtrees from DendroPy v4.1.0 (18).

sumtrees.py BOOTTREES --unrooted -t TARGETTREE -o OUT --to-newick

--no-summary-metadata

5. We generated a concatenated alignment for the 14,187 loci for which we inferred gene trees. With these
alignments, we used RAxML to infer branch lengths for the best ASTRID tree along with all bootstraps.
We then summarized the patterns across all bootstraps, both in terms of support and median branch
length, to the best ASTRID tree using sumtrees in DendroPy.

raxmlHPC-PTHREADS -f e -t ASTRID.tre -m GTRGAMMAI -s concatenated_alignment.fa -n

Ctenotus

sumtrees.py --edges median-length -t ASTRID_best.tre -F newick -l support --unrooted

--suppress-annotations -o ASTRID_best_summary.tre ASTRID_boot_brlens.trees

6. To get an ultrametric and rooted tree, we used the script: https://github.com/singhal/ct_gen_

div/blob/master/date_and_plot_species_trees.R. We rooted the tree using data from other multi-
locus phylogenies of Ctenotus and related genera (11). We could do so because the deep splits in the
these trees’ topologies were similar. We were unable to root this tree using outgroups because there
were too few homologous ddRAD loci between Ctenotus and its nearest outgroup, Lerista.

For this rooted tree, we used penalized likelihood to infer a chronogram for the ASTRID topology as
implemented in the function chronos in the R package ape (19). To determine the appropriate λ, we
tried a series of values: 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1. λ was chosen by comparing log-likelihood across
different values. The best lambda was 1e-5.

1.8 Collecting data on possible drivers of genetic diversity
We have three hypothese that are not mutually-exclusive that might explain variation in genetic diversity
across species. The first is that genetic diversity reflects census population size, or Nc. The second is that en-
vironmental heterogeneity increases genetic diversity. The final is that historical demographic shifts impact
genetic diversity.

To test these hypotheses, we collated data on 11 independent ecological, geographical, and morphologi-
cal variables. These are:

1.8.1 Proxies for census population size

1.8.1.1 Morphology

Morphology, particularly body size, is often used as a proxy for census population size, because bigger
animals are believed to be less abundant (20). We used previously published data on eight different mor-
phological traits to characterize patterns of morphology (11). First, we took the average morphological
measurement for a species. On average, 5.87 individuals were measured per nominal species. Then, we log-
transformed these measurements to get normal distributions across species. We then summarized patterns
across these eight traits by doing a scaled principal component analysis using the R function prcomp. We
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retained the first two axes; together, these axes explain 98% of the variation. The first axis largely describes
size, and the second axis describes shape variation.

1.8.1.2 Range size

Range size is often used as a proxy for census population size; species with bigger ranges are assumed to
have larger populations (21). To infer geographic ranges for each OTU, we used an approach that combines
data from biodiversity databases with ecological niche modeling. This approach is particularly useful for
species for which ranges are not well-delimited in field guides, such as many Australian lizards. We imple-
mented this approach in a script that will be included in a manuscript in preparation (Title et al., in prep.).
As such, the script will be embargoed on DataDryad until the manuscript is published.

Occurrence data were accessed from Atlas of Living Australia, VertNET and GBIF data portals on March
2015, and then data were filtered to remove duplicates and as described previously (22). For OTUs that
were synonymous with a nominal species, we followed a multiple-step procedure to construct ranges. First,
occurrence points for that species were used to construct an alpha-hull polygon. Note that all the species
used in this study had at least 3 or more occurrence points. Then, we defined an ecological niche model
(ENM) using MaxEnt v3.3.3k (23). We first built a model that used 22 environmental variables, which
included all 19 bioclimatic variables and elevation from WorldClim v1.4 at 5 arc-minute resolution, actual
evapotranspiration, and aridity index. The actual evapotransportation index was from (24); the aridity index
was from (25). We only used occurrence data to build these models; we did not include observed absences.
To avoid over-fitting, we then thinned this model to include only those environmental variables that were
significant above 5% after permutation tests. We then identified the minimum presence threshold as the
value that would allow us to retain the top 99% of occurrences as present. Using this minimum presence
threshold, we then projected the ENM as presence-absence by applying a minimum presence threshold.
Finally, we defined the range as the intersection between the alpha-hull polygon and the ENM-defined
habitat. If necessary, we further clipped this range to the coastal limits of Australia. These analyses used the
R packages alphahull, raster, and rgeos (26; 27; 28).

For OTUs that combined across nominal species, we combined the nominal species ranges to define the
range. For OTUs that were split from nominal species, we followed the same procedure as above to create
the nominal species range. Then, we used the genetic sampling points for each cryptic OTU to construct
individual ENMs. We then subdivided the original nominal range by assigning to each cryptic OTU the
portion of the range in which it had the highest probability for occurrence based on its individual ENM.
This approach assumes that ranges for cryptic species complexes do not overlap. We believe this is a fair
assumption for three reasons. First, we sample densely throughout many of these ranges and across pre-
sumed boundaries between cryptic lineages. Through this sampling, we have yet to identify any evidence
for syntopy among lineages in a cryptic complex. Second, we recover evidence for limited mtDNA-nDNA
discordance at presumed boundaries between cryptic lineages in Ctenotus, suggestive of introgression at
parapatric borders ([(1), Singhal et al, unpublished). Third, data from other lizard systems on cryptic diver-
sity also typically recover narrowly parapatric boundaries between cryptic lineages (29; 30; 31). For OTUs
that reflected more complex relationships to nominal species, we followed the same approach, instead defin-
ing ranges using our genetic sampling points as our occurrence points.

1.8.1.3 Number of museum occurrences

Number of museum occurrences could be a proxy for census population sizes, though some have suggested
that this relationship is likely to be weak given that sampling is generally biased (32). We test this here.
To count the number of database occurrences for each OTU, we used the script in https://github.com/

singhal/ct_gen_div/blob/master/species_counts.R.

8

https://github.com/singhal/ct_gen_div/blob/master/species_counts.R
https://github.com/singhal/ct_gen_div/blob/master/species_counts.R


1.8.2 Environmental hetereogeneity

1.8.2.1 Elevational range

Habitat heterogeneity might lead to different alleles being favored in different habitats, and even with low
migration, this can lead to increased genetic diversity (33). One measure of habitat heterogeneity is eleva-
tional range. To calculate the elevational range encompassed by a range, we extracted elevational data
for a range using the R package raster and the altitude data available from Bioclim (27; 34). We took
the range of elevation seen across the range as our metric. This is implemented in the script: https:

//github.com/singhal/ct_gen_div/blob/master/heterogeneity.R.

1.8.2.2 Climate heterogeneity

As with elevational range, climate heterogeneity can be a proxy for habitat heterogeneity. We summarized
climate heterogeneity using the script https://github.com/singhal/ct_gen_div/blob/master/heterogeneity.
R. We used the range in values for the first three principal component axes (PC1, PC2, PC3) describing cli-
matic heterogeneity in our original analyses. Together, these three axes explained 79% of the variation. The
first axis heavily loads on measures of precipitation, the second on measures of temperature, and the third
on measures of elevation and slope. For our final analyses, we dropped PC2 and PC3 because they were
highly correlated with elevational range. This approach used the R package raster (27).

1.8.3 Historical demography

1.8.3.1 Average historical stability

History is expected to impact genetic diversity; in particular, demographic shifts through time can lead to
effective and census population sizes becoming uncorrelated (35). To infer the effects of changing demogra-
phy, we inferred stability of each OTU’s geographic range through time.

We first prepared the paleomodels for use in modeling, using the script: https://github.com/singhal/
ct_gen_div/blob/master/prep_paleomodel_layers.R. This script clips the global layers to Australia to
increase the speed of analyses. It further aggregates the last interglacial data from 30 arc-seconds to 2.5 min-
utes resolution. We avoid using this narrower resolution because it is artificially precise given the challenges
of inferring historical climates. We then used the script https://github.com/singhal/ct_gen_div/blob/
master/habitat_stability.R to infer average historical stability through time.

1.8.4 Possible confounders

1.8.4.1 Time in tree

We included the branch length for a OTU in the species tree as a possible confounding variable. To do so,
we calculated the branch length from each OTU tip to its most-recent common ancestor using the R package
ape (19). The tree we used here was our species tree of all 83 OTUs (Fig. S15).

1.8.4.2 Latitudinal midpoint

We included the latitudinal midpoint at which a OTU is found as a possible confounding variable. Using the
inferred geographic ranges, we found the latitudinal midpoint using the function gCentroid implemented in
the R package rgeos.

1.8.4.3 Biomes

For some analyses, we included the biome(s) in which an OTU was found as a confounding variable. To get
these data, we accessed biome data from The Nature Conservancy’s Terrestrial Ecoregions of the World,
available at http://maps.tnc.org/gis_data.html, on 14 December 2015. We then determined which
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biomes a range overlaps by using the script: https://github.com/singhal/ct_gen_div/blob/master/

biomes_pi.R

1.9 Model-Testing
Organization of the final data set and model testing is implemented in https://github.com/singhal/ct_

gen_div/blob/master/final.R. We took the natural log of two variables – range size and number of mu-
seum occurrences – because profiling the data suggested these two variables had non-normal distributions.
Further, because we were testing a full array of additive models, in which every factor was included in ev-
ery combination, we needed to ensure that the number of data points included across models was constant.
As such, we dropped any rows with missing data; most OTUs were dropped due to missing morphology
data. This lead to a final data set of 74 OTUs.

To determine which factors significantly predicted genetic diversity, we used an approach that calculates
the relative importance of a factor in predicting genetic diversity across all possible additive models. For a
given set of factors, all possible additive models are tested in their ability to predict genetic diversity. Each
additive model was run as a phylogenetic linear model using the R package phylolm (36). For each additive
model, Akaike weights are calculated. To calculate Akaike weights, we followed the process outlined (37).
First, we calculated corrected AIC (AICc) scores for each model. Then, we identified the best scoring model
(best) and calculated the raw Akaike weight by using the formula e

best−model
2 . The final Akaike weights were

then calculated by dividing the raw weights by the sum of all the raw weights. The relative importance for a
given factor is then calculated by summing the relative Akaike weights for all the additive models in which
it appears.

2 Figures and Tables

2.1 Tables

Table S1: Data on the individual samples used in this study, including the sample names, the OTU to
which they were assigned, the nominal species to which they were identified, their latitude and longi-
tude, the number of sites that had >10× coverage (denominator), the number of reads sequenced (origi-
nal reads), the number of reads aligned to the pseudo-reference genome (aligned reads), and the median
coverage at sites for which genotypes were called (i.e., those with >10× coverage). Many of these tis-
sues are accessioned: AMSR (Australian Museum), CUMV (Cornell University Museum of Vertebrates),
ABTC (Australian Biological Tissue Collection), NTMR (Northern Territory Museum), QM (Queensland
Museum), SAM (South Australian Museum), UMMZ (University of Michigan Museum of Zoology), and
WAM (Western Australian Museum). These data are also available at https://github.com/singhal/ct_
gen_div/blob/master/TableS1_individual_data.csv.
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variable lambda p-value
within-population π 6.78e-05 1
mtDNA π 6.78e-05 1
species-wide π 6.78e-05 1
range size 6.78e-05 1
elev. range 0.253 1
PC1 range, climate 4.62e-05 1
avg. hist. stability 6.78e-05 1
number of occurrences 0.511 1
PC1, morphology 1.03 1.52e-15
PC2, morphology 0.896 0.000376
lat. midpoint 0.894 1.04e-08
time in tree 1.03 1.27e-36

Table S2: Dependent and independent variables used in the model and their phylogenetic signal (λ) and its
significance. None of the dependent variables measuring genetic diversity showed signal.

formula λ AIC Akaike weight adj. r2

within-population π ∼ ln(number of occurrences) 1.89E-08 -868.87 0.0338 0.15
within-population π ∼ ln(range size) + ln(number of occurrences) 1.96E-08 -869.07 0.0374 0.17
within-population π ∼ ln(number of occurrences) + PC1, morphology 2.07E-08 -867.83 0.0201 0.175
within-population π ∼ ln(number of occurrences) + PC2, morphology 1.96E-08 -867.46 0.0167 0.17
within-population π ∼ ln(range size) + lat. midpoint + ln(number of occurrences) 2.06E-08 -867.78 0.0196 0.166
within-population π ∼ ln(range size) + ln(number of occurrences) + PC1, morphology 2.27E-08 -868.83 0.033 0.201

Table S3: The models in the top 1% of AIC weights of all models fit, showing model’s formula, the phy-
logenetic signal (λ) inferred for the model’s covariance, the AIC, and the AIC model weight of the model.
Because all models showed low levels of phylogenetic signal, also shown are the adjusted r2 terms for a
non-phylogenetic linear model fit with the same formula. All top-scoring models include the factor with
the highest relative importance – number of museum occurrences. This factor is the only significant factor
identified across the entire model selection process.
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nominal species clutch size citation
Ctenotus ariadnae 4 (38)
Ctenotus atlas 1.5 (38)
Ctenotus brooksi 2.2 (39)
Ctenotus calurus 2.7 (38)
Ctenotus colletti 2 (38)
Ctenotus essingtoni 2.9 (40)
Ctenotus gagadju 2 (40)
Ctenotus helenae 4.3 (39)
Ctenotus helenae 3.5 (38)
Ctenotus labillardieri 4.1 (41)
Ctenotus lancelini 3 (42)
Ctenotus leae 3.7 (38)
Ctenotus leonhardii 3.3 (39)
Ctenotus leonhardii 5.8 (38)
Ctenotus leonhardii 2 (43)
Ctenotus pantherinus 6.6 (39)
Ctenotus pantherinus 6.1 (38)
Ctenotus pantherinus 6 (44)
Ctenotus piankai 2.8 (39)
Ctenotus quattuordecimlineatus 3.1 (39)
Ctenotus regius 2.04 (43)
Ctenotus rhomboidalis 2 (45)
Ctenotus robustus 5.4 (40)
Ctenotus robustus 5.53 (40)
Ctenotus robustus 2 (45)
Ctenotus saxatilis 4 (40)
Ctenotus schomburgkii 2.1 (39)
Ctenotus schomburgkii 3 (38)
Ctenotus schomburgkii 1.96 (43)
Ctenotus strauchii 2.2 (43)
Ctenotus taeniolatus 4 (40)
Ctenotus taeniolatus 4.6 (40)
Ctenotus taeniolatus 3.7 (45)
Ctenotus uber 2 (43)

Table S4: Clutch sizes for nominal species of lizards, as reported in the literature. Some species have multiple
measurements, reflecting values estimated from different localities and / or different studies. Clutch size,
which is one measure of life history variation, shows a trend toward being correlated with genetic diversity
(Fig. S10).
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Table S5: Survey of studies that have compared genetic diversity across multiple species. These studies
were found opportunistically throughout this study. Additional studies were found by reviewing the
citations for each study and citing papers. We only included those studies that measured genetic diversity
across 5 or more species and explicitly identified a significant factor explaining variation in genetic diversity.
These studies span a wide variety of taxa and use many types of genetic markers (i.e., allozymes, organellar
genomes, microsatellites).

For each study, we have included the number of species studied, the crown age of the species studied (as
inferred from timetree.org), a rough sense of the phylogenetic scale, which major hypothesis the study is
testing, the factors identified to be significant predictors of genetic diversity, and how much variation was
explained. We also include details on what type of genetic markers were used and what measure of genetic
diversity was included. For studies reporting a correlation coefficient (r) between the predictor varaiable
and genetic diversity, proportion of variance is shown as r2. These results show that most studies are at
a broad phylogenetic scale, and the average study explains a relatively small (<40%) of the variation in
genetic diversity. A visual summary of these data is available at Fig. 5. These data are also available at
https://github.com/singhal/ct_gen_div/blob/master/TableS5_XXX.csv.

2.2 Figures
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Figure S1: Map of samples (N=575) used in this study. The map reflects the alpha diversity of nominal
Ctenotus species across Australia.
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Figure S2: Changes in nucleotide diversity (π) due to technical artifacts of SNP calling. For five individuals
from each of five randomly-selected OTUs, we called SNPs for each individual separately and for all five
individuals at once. We then estimated π per individual for each SNP call set. Shown is the percent increase
in π for a given individual for the five-individual SNP call set over the one-individual call set. On average,
π increased by 6.8% between the two sets. These results suggest that calling SNPs for unbalanced numbers
of individuals can introduce technical artifacts.
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Figure S3: (A) Bootstrap support, as inferred by RAxML, for all nodes in the phylogeny used to delimit OTUs
and for GMYC-defined species nodes. The nodes that define OTUs tend to be well-supported. (B) Overlap
between OTU identities as determined by GMYC when applied to phylogenies inferred by two methods,
FastTree and RAxML. In general, species delimitation across the two phylogenies is similar.
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C. rubicundus
C. pantherinus
C. quinkan
C. agrestis
C. ingrami
C. taeniolatus
C. arcanus
C. spaldingi 3
C. spaldingi 4
C. rimacola
C. spaldingi 1
C. spaldingi 5
C. spaldingi 2
C. decaneurus 1
C. decaneurus 2
C. inornatus 1
C. inornatus 2
C. superciliaris 2
C. superciliaris 1
C. coggeri
C. vertebralis
C. arnhemensis
C. essingtoni 1
C. essingtoni 2
C. joanae
C. brevipes
C. grandis
C. angusticeps
C. duricola 2
C. piankai 1
C. duricola 1
C. piankai 2
C. serventyi
C. ariadnae
C. hanloni
C. dux
C. quattuordecimlineatus 2
C. atlas
C. uber 2
C. uber 1
C. greeri
C. tanamiensis
C. pulchellus 1
C. pulchellus 2
C. gagudju
C. militaris
C. regius
C. septenarius
C. iapetus
C. quattuordecimlineatus 1
C. hebetior
C. leonhardii 1
C. leonhardii 2
C. orientalis 1
C. olympicus
C. leae
C. astarte
C. orientalis 2
C. australis
C. mimetes
C. striaticeps
C. tantillus 2
C. nigrilineatus
C. halysis
C. tantillus 1
C. ehmanni
C. schomburgkii 4
C. schomburgkii 1
C. schomburgkii 2
C. schomburgkii 3
C. rosarium
C. euclae
C. brooksi
C. calurus 1
C. calurus 2
C. strauchii 1
C. zebrilla
C. allotropis
C. strauchii 2
C. strauchii 3
C. impar
C. youngsoni
C. catenifer
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Figure S4: The ”species tree” for Ctenotus, as inferred by ASTRID, shown with values of species-wide es-
timates of nucleotide diversity (π). Closely-related OTUs show significant variation in levels of genetic
diversity. Nodes labeled with circles have bootstrap support >95%. Fig. S15 depicts the species tree with
full bootstrap support.
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Figure S5: The ”species tree” for Ctenotus, as inferred by ASTRID, shown with values of species-wide esti-
mates of mitochondrial DNA nucleotide diversity (π). Closely-related OTUs show significant variation in
levels of genetic diversity. Nodes labeled with circles have bootstrap support >95%. Fig. S15 depicts the
species tree with full bootstrap support. Note fewer OTUs are shown than depicted in Fig. S15. We could
only infer mtDNA for 60 OTUs; all other OTUs sampled two or more individuals for mtDNA.
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Figure S6: Spearman correlations between the nine independent variables (range size, latitudinal midpoint
of the range, elevational span of the range, PC1 span in climate across the range, average historical stability
of the range, number of museum occurrences, terminal branch length, and PC1 and PC2 in morphology)
retained in the final model-fitting procedure. All variables were measured for for each OTU. These nine
variables test the three non-exclusive hypotheses that might predict genetic diversity.
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Figure S7: Coefficient of variation results for models fitting nine independent variables to within-population
π based on 100 bootstraps of the full data set. Shown are the 95% range and median values for relative im-
portance, coefficient, and p-value for each independent variable. The vertical gray line in the coefficient plot
is at 0 and at 0.05 in the p-value plot.
These results show broad variance around most parameter estimates for most independent variables, sug-
gesting that more sampling would be beneficial and indicates the presence of outliers. These results further
suggest that range size is likely an important factor predicting genetic variation.
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Figure S8: Model fitting for species-wide estimates of mitochondrial DNA nucleotide diversity (π) by nine
independent variables that test the three hypotheses that might explain variation in genetic diversity. Shown
are the relative importance, p-value significance, and directionality of coefficient for each variable as sum-
marized across all additive models, weighted by relative AIC weights. None of these factors significantly
predicted genetic diversity.
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Figure S9: Model fitting for species-wide estimates of nucleotide diversity (π) by nine independent variables
that test the three hypotheses that might explain variation in genetic diversity. (A) Shown are the relative
importance, p-value significance, and directionality of coefficient for each variable as summarized across
all additive models, weighted by relative AIC weights. (B) The relationship between species-wide π and
one of the model’s significant variables, range size. (C) The relationship between species-wide π and one
of the model’s significant variables, average historical stability. (D) The relationship between species-wide
π and one of the model’s significant variables, number of museum occurrences. The significance of range
size and number of museum occurrences lend support the hypothesis that genetic diversity is a function
of census population size, and the significance of historical stability supports the hypothesis that history
impacts genetic diversity.
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Figure S10: Correlation between clutch size (as detailed in Table S2) and within-population nucleotide di-
versity, π. The trend between the two variables is positive and non-significant (phylogenetic generalized
least-squares; p-value=0.31). Overall variation in this life-history trait is low – but for one outlier, all species
have clutch sizes between 2 and 4. Raw data used in this figure are given in Table S4.
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Figure S11: Comparisons of nucleotide diversity estimates across three comparative studies of genetic di-
versity: Leffler et al., 2012 (72), Romiguier et al. 2014 (87), and the present study. Leffler et al. estimates
are based on mean values of nucleotide diversity (measured as πS) across populations within a species for
a varied set of nuclear loci, and these data summarize patterns in eukaryotes, including plants, parame-
cium, and chordates. Romiguier et al. estimates are πS measured across individuals within a species for
a set of highly-expressed coding sequences, and these data summarize patterns in animals, including sea
squirts, termites, and penguins. The left panel shows all species; the right panel only shows vertebrate
species. These three studies estimated diversity across non-homologous sets of loci that likely have differ-
ent selection histories and local recombination environments. The data should be interpreted accordingly.
In general, these results show that the OTUs in Ctenotus exhibit a narrower range of genetic diversity levels
compared to that seen in Leffler et al. and Romiguier et al.. However, this range is broader than might be
expected given the ecological and phylogenetic similarity of Ctenotus.
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Figure S12: Isolation-by-distance relationships for three randomly selected OTUs from the present study.
Linear regressions are fit to those OTUs which show significant isolation-by-distance (IBD) relationships
across their range. This figure indicates that many of the OTUs in this study show significant IBD patterns.
As such, calculating genetic diversity across individuals will summarize both local patterns of diversity and
range-wide patterns of differentiation. Thus, we instead focus on local patterns of diversity (as summarized
by within-population π), although we report species-wide patterns elsewhere (Fig. S4, S9).

Figure S13: Range of within-population (π) for each OTU. These data suggest genetic diversity varies across
an OTU’s range. Thus, this work focuses on mean within-population genetic diversity.
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Figure S14: Three measures of changes in historical demography (average historical stability, growth rate
as inferred by LAMARC, and Tajima’s D as inferred by ANGSD) as they relate to two proxies for census
population size – range size in km2 and number of occurrences in museum databases. Shown are Spearman
correlations. Growth rate and Tajimas D were only calculated for OTUs with ≥3 individuals (N=42). These
data suggest that more abundant species have experienced less stable histories than less abundant species.
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Figure S15: The ”species tree” for species-level lineages in Ctenotus, as inferred by ASTRID. Nodes with
bootstrap support <95% are labeled.
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Figure S16: Quality metrics for three different ddRAD assembly approaches: PyRAD, R2: a method that
clusters the reverse read of each read-pair, and Rainbow. Metrics measured are: mapping alignment quality
(MAQ), the percent of reads used in the assembly that can align back to the assembly (percentMapped),
the percent of reads that map as pairs (percentPaired), and the percent of reads that align uniquely to the
assembly (percentUnique), and for every given locus in the assembly, the number of individuals in that
species with a homolog. These metrics were quantified for eight randomly selected OTUs. Across all met-
rics, higher values indicate higher assembly quality. Thus, all metrics suggest that Rainbow resulted in the
best assemblies.
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