Reproductive isolation between phylogeographic lineages
 scales with divergence: Supplementary Information

Sonal Singhal and Craig Moritz singhal@berkeley.edu craig.moritz@anu.edu.au

Museum of Vertebrate Zoology University of California, Berkeley 3101 Valley Life Sciences Building Berkeley, California 94720-3160

Department of Integrative Biology University of California, Berkeley 1005 Valley Life Sciences Building Berkeley, California 94720-3140

Research School of Biology The Australian National University Building 116 Acton, ACT 0200

4 1 Phylogeny

3

⁵ To infer the phylogeny shown in Figure 1 (main text), we concatenated and aligned sequences ⁶ from previously published loci for the lineages in this group – the mitochondrial locus *ND4* and ⁷ the nuclear loci β -globin intron and C-mos exon (1; 2; 3; 4) using MUSCLE (5). We used RAxML to ⁸ infer a maximum-likelihood tree for the concatenated alignment (6). The approximate root age for

• the tree was estimated based on data from (7). The final alignment is published in the DataDryad

¹⁰ package XXX.

References

- [1] Bell R, *et al.* (2010) Patterns of persistence and isolation indicate resilience to climate change in
 montane rainforest lizards. *Mol Ecol* 19:2531–2544.
- [2] Moussalli A, Moritz C, Williams S, Carnaval A (2009) Variable responses of skinks to a common
 history of rainforest fluctuation: Concordance between phyleogeography & paleo-distribution
 models. *Molecular Ecology* 18:483–499.
- [3] Singhal S, Moritz C (2012) Testing hypotheses of genealogical discordance in a rainforest lizard.
 Mol Ecol 21:5059–5072.
- ¹⁹ [4] Dolman G, Moritz C (2006) A multilocus perspective on refugial isolation and divergence in ²⁰ rainforest skinks (*Carlia*). *Evol* 60:573–582.
- [5] Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucl Acids Res* 32:1792–97.
- [6] Stamatakis A (2006) RAxML-VI-HPC: Maximum Likelihood-based phylogenetic analyses with
 thousands of taxa and mixed models. *Bioinformatics* 22:2688–2690.
- [7] Skinner A, Hugall A, Hutchinson A (2011) Lygosomine phylogeny and the origins of Australian scincid lizards. *Journal of Biogeography* 38:1044–1058.

27 2 Figures & Tables

Figure 1: **Detailed transect maps of study system.** On left, transect for each contact zone, showing mitochondrial composition of unique localities with localities scaled according to sample size; on right, map of the Australian Wet Tropics showing the range of the phylogeographic lineages. From top to bottom, *Lampropholis coggeri* N/C, *Saproscincus basiliscus* N/C, *Carlia rubrigularis* N/S, *L. coggeri* C/S, and *S. lewisi/S. basiliscus* N.

Figure 2: **Morphological variation among lineages.** Morpological data summarized across sexes and across phylogeographic lineages within the four morphologically defined species in this study: A. *Carlia rubrigularis* ($N_{\varphi} = 223$, $N_{\sigma^2} = 156$), B. *Lampropholis coggeri* ($N_{\varphi} = 174$, $N_{\sigma^2} = 143$), and C. *Saproscincus basiliscus* and *S. lewisi* ($N_{\varphi} = 119$, $N_{\sigma^2} = 119$). For each species, we present the first two axes of variation, as summarized by a principal components analysis. Significant differences are labeled in red.

Figure 3: **2D-SFS used for inferring population history.** Two-dimensional site-frequency spectra (2D-SFS), as inferred by ANGSD, for A. *Lampropholis coggeri* N/C, B. *Saproscincus basiliscus* N/C, C. *Carlia rubrigularis* N/S, and D. *L. coggeri* C/S. For each lineage-pair, we used a total of ten individuals, or twenty chromosomes, evenly split between the two lineages. Details on single nucleotide polymorphisms used to construct the 2D-SFS can be found in Table S2.

Figure 4: **Correlation of divergence history and reproductive isolation.** Comparative results showing the correlation between divergence history and indices of reproductive isolation: average nuclear cline width, mitochondrial cline width, coefficient of variance in cline width, Hardy-Weinberg disequilibrium (F_{IS}), linkage disequilibrium (R_{ij}), and percent of hybrids in the contact zone. Data for nuclear cline widths from *S. basiliscus* N/C are not represented due to limited sampling. Graphs are labeled with correlation coefficients; asterisks indicate significant correlations.

Figure 5: **Correlation of nuclear divergence and reproductive isolation.** Comparative results showing the correlation between nuclear divergence and indices of reproductive isolation: average nuclear cline width, mitochondrial cline width, coefficient of variance in cline width, Hardy-Weinberg disequilibrium (F_{IS}), linkage disequilibrium (R_{ij}), and percent of hybrids in the contact zone. Graphs are labeled with correlation coefficients; asterisks indicate significant correlations.

Figure 6: **Correlation of mitochondrial divergence and reproductive isolation.** Comparative results showing the correlation between mitochondrial divergence and indices of reproductive isolation: average nuclear cline width, mitochondrial cline width, coefficient of variance in cline width, Hardy-Weinberg disequilibrium (F_{IS}), linkage disequilibrium (R_{ij}), and percent of hybrids in the contact zone. Graphs are labeled with correlation coefficients; asterisks indicate significant correlations.

Figure 7: **Model fitting for three indices of reproductive isolation.** We fit linear (solid) and quadratic models (dotted) to the increase of reproductive isolation through time. Relative weights for the different models (as calculated via AIC scores) are shown for each model for each index.

contact zono	number of	number of transect	transect
contact zone	samples	populations	length
L. coggeri N/C	202	11	16 km
S. basiliscus N/C	209	10	12 km
C. rubrigularis N/S	308	10	7 km
L. coggeri C/S	406	17	2 km
S. basiliscus N & S. lewisi	55	NA	15 km

Table 1: **Sampling details for each contact zone.** Transect populations are those used in estimation of clines.

LocusID	Forward Primer	Reverse Primer	PCR Temp.	Location/Type	R. Enz.	Cutting Pattern	Reference	contact
GLB1L2	GGGTTGGAGGCTCCCTGCCT	CCGTCACAGCTTCACTAAGGTCCGT	65	3'UTR, non-coding	XbaI	410 (190+220)	this paper	C. rubrigularis N/S
GRN	TGCCCTGTCCCATGAGGGCT	TCGGGAGCTGAACCTCCACCC	65	3'UTR, non-coding	BcII	3001 (50+250)	this paper	C. rubrigularis N/S
IDE	TGGGACATCCCAAAGCAGACACT	TGGACACCTGGGTTCTCTGTGC	65	3'UTR, non-coding	IdsM	270 (100+170)	this paper	C. rubrigularis N/S
IRS4	CCAGCACAGGCACCGACAGG	CAGGGCATCGGCTTCCAGGC	65	3'UTR, non-coding	KpnI	3001(250+50)	this paper	C. rubrigularis N/S
KIAA2013	TCAGCGCCAGCACTTGCCTC	AGAGGCCACGGGAGGAGCAG	65	3'UTR, non-coding	XbaI	300 (200+100)	this paper	C. rubrigularis N/S
LMBR1	TGCTGACITGCTCACCACTGCC	GCCTAGCCCAGGAACAAGAGCG	65	3'UTR, non-coding	Eco53KI	3701(50+320)	this paper	C. rubrigularis N/S
MST4	TAGGCGGTTGGCAGCAGCAC	CAAAAGCTGCCCCCTCCCCG	65	3'UTR, non-coding	BstUI	2601(90+170)	this paper	C. rubrigularis N/S
ND4	CACCTATGACTACCAAAAGCTCATGTAGAAGC	CATTACITITACITGGATITIGCACCA	50	CDS, syn.	Hhal	900 (500+400)	Arevalo et al, 1994	C. rubrigularis N/S
NT5C2	CGGTTCTGCTGCAGGCCCAA	ACAAATGCGCCACATGCCAAGG	65	3'UTR, non-coding	SspI	2901 (50+240)	this paper	C. rubrigularis N/S
SF1	TCAGGACGCTAGCGCCGAGT	CACACCGGCCCCACACAGAC	65	3'UTR, non-coding	XmnI	2901 (50+240)	this paper	C. rubrigularis N/S
SF3A1	CCTGGGA AGCA ACA GCCGGG	CTGCGCTGGGCAAGACACCA	65	3'UTR, non-coding	AlwNI	200 (40+60+100)	this paper	C. rubrigularis N/S
ABHD5	ACCCCACTTGTTCTTCTCCA	TGAGTAAGCAGCTGCCAAAA	60	CDS, syn.	BstBI	2301(160+70)	Singhal and Moritz 2012	L. coggeri C/S
AUTO	TGAGCAGGAAAGGCAAATCT	GTGCCAGTGTGTCCTTGATG	62	CDS, syn.	Banl	190(170+20)	Singhal and Moritz 2012	L. coggeri C/S
BGLO (intron 2)	GCGAACTGCACTGYGACAAG	GCTGCCAA GCGGGTGGTGA	63	intron	ApeKI	6701 (640+30)	Dolman and Phillips 2004	L. coggeri C/S
LEMD2	GTGCATTCAAGCAGACCAGA	GGCTAGCACTCTCCACCAAG	60	3'UTR, non-coding	HindIII	240 (140+100)	Singhal and Moritz 2012	L. coggeri C/S
ND4	CACCTATGACTACCAAAAGCTCATGTAGAAGC	CATTACITITACITGGATITGCACCA	50	CDS, syn.	Hhal	900 (530+370)	Arevalo et al, 1994	L. coggeri C/S
NDST2	TCTTGGGGTTGTTTCCAGAC	CACTTGGCATTGTGAGCAGT	60	3'UTR, non-coding	NcoI	440 (230+210)	Singhal and Moritz 2012	L. coggeri C/S
PCBD1	TCTCTCTTGGCTGTGTGGAA	TAAATCATGTGCCCCCAAAT	60	3'UTR, non-coding	Hinfl	250 (140+110)	Singhal and Moritz 2012	L. coggeri C/S
RPS8 (intron 3)	CTCITGGGCGTAAGAAAGGAG	CCGCTCATCGTATTTCTTCTG	53	intron	HhaI	630 1(400+230)	Bell et al., 2010	L. coggeri C/S
RTN3	AACCTGTTCCAACGCAATTC	TTGAGAAAGGGGGGGGGTTGTGG	60	3'UTR, non-coding	Eco53KI	440 (130+310)	Singhal and Moritz 2012	L. coggeri C/S
SAR1	TAATCACITTGGCCCACCTC	TATCGCACAAATGCAAGAGC	56	3'UTR, non-coding	AccI	4201(350+70)	Singhal and Moritz 2012	L. coggeri C/S
TPI (intron 5)	TTCTA GCCTA TGAA CCA GTTTGG	CCTCAACTTGTCATGAACITCC	50	intron	I	ł	Bell et al., 2010	L. coggeri C/S
AKT2	ATTCTTCCCCCA CCCCGGG	CCGCACCCCGGCAAACAGAA	53	3'UTR, non-coding	Hpy166II	380 (120+180+80)	this paper	L. coggeri N/C
ELOVL2	GAGGCAGGGTGTGCAGCAGG	TGCAGCCTAAGAGCAAAAGCCAGT	65	3'UTR, non-coding	BstNI	2401(60+180)	this paper	L. coggeri N/C
MAT1A	TGGTCAGGCTGCCAGATCCCA	GCCTCTCCATTCTCTTGGCCCC	65	3'UTR, non-coding	BgII	2801 (200+80)	this paper	L. coggeri N /C
PCYT1A	GCAGCCCATGGCGGGTATC	CTGGGCAGGCTCTGGGCAAC	65	3'UTR, non-coding	Rsal	2301(50+180)	this paper	L. coggeri N/C
PEX16	AGCCITGGTITGGTCATTTCAGCCA	GGACCCACCACCAGCTCTGGA	65	3'UTR, non-coding	SphI	3001(270+30)	this paper	L. coggeri N/C
PNPLA2	TGCTGGAGCTGGACCTAGCGA	AGGAAGGGAGGCCCAGTTCACA	65	3'UTR, non-coding	KpnI	2501(200+50)	this paper	L. coggeri N/C
PPP2R1A	GGGTGGAGGGATCCGGTCGA	GGGTTTGCGCACCTCCCAGG	65	3'UTR, non-coding	Ncol	3801 (300+80)	this paper	L. coggeri N/C
SDCBP	TCATGTGGGCATCCAGCTCT	ACTGTTTGTGTAAAATGCAGGCAA	65	3'UTR, non-coding	BstNI	2201(170+50)	this paper	L. coggeri N/C
SLC35F5	TGAGGCTCCTGCCTGAATGGAA	AGCGATGCAACAGTGCCAGC	65	3'UTR, non-coding	Rsal	300 (200+100)	this paper	L. coggeri N/C
SLC37A4	TCCCCTGCCCAGCACTGTGG	TGGAAGGGGCTGAGTGGGTCC	65	3'UTR, non-coding	Dral	400 (250+150)	this paper	L. coggeri N/C
ND4	CACCTATGACTACCAAAAGCTCATGTAGAAGC	CATTACITITACITGGATITGCACCA	57 & 50	CDS, syn.	Hhal	900 (300+600)	Arevalo et al, 1994	L. coggeri N/C
ACY1	CCCAAGGAGGCAAAGGGCCC	TCACCCCATGCCTTCCCCT	65	3'UTR, non-coding	IlsM	190 (110+80)	this paper	S. basiliscus N/C
DPP4	TGCAGTTTCTTTGTCCCATGTTGGGA	GCACACCCCACTGGCACA	65	3'UTR, non-coding	HhaI	2801 (60+220)	this paper	S. basiliscus N/C
ECE2	ACITCIGGGGGGGGGGGGGGGGGG	GTGGGAGCTCTGGGGTGGGT	65	3'UTR, non-coding	Hpy166II	180 (45+135)	this paper	S. basiliscus N/C
GOLGA2	AGTGGGCCTATGTGCTGAGCA	AGCACCGTAAGGGGGGGGGGGCACA	65	3'UTR, non-coding	IqsM	2501(200+50)	this paper	S. basiliscus N/C
LCAT	ACCCTGCCGGACAACTGGAGA	AGTTGCGCACAAGCCCTGCA	65	3'UTR, non-coding	BcII	180 (80+100)	this paper	S. basiliscus N/C
PNPLA2	AGAGTGCAACTCCCCACACC	GGTCCTTCAAGACAGCAGCA	65	3'UTR, non-coding	BstUI	2301(60+170)	this paper	S. basiliscus N/C
SLC9A7	TGATGAACAGGGCACTCGGCT	AGTCCACCTGCCCTTGTGCA	65	3'UTR, non-coding	BgII	2501(200+50)	this paper	S. basiliscus N/C
TOMM70A	TGACTCATGTTTTGAGGGTTGTTGTGA	TGCAGCAGAACAGCAGGCTG	65	3'UTR, non-coding	BsmAI	2801(90+190)	this paper	S. basiliscus N/C
TXNRD3	TGGGGAAACCTATTCGTCCAGTCA	AGGCCACTGCTITCITAGCAGC	65	3'UTR, non-coding	BsmAI	330 (130+200)	this paper	S. basiliscus N/C
UGT1A1	GCAAGTGCTCTGCCAGCATGC	AGCACCGATTCAGCGCAGCT	65	3'UTR, non-coding	DrallI	2201(50+170)	this paper	S. basiliscus N/C
ND4	CACCTATGACTACCAAAAGCTCATGTAGAAGC	CATTACTTTACTTGGATTTGCACCA	57 & 50	CDS, syn.	Rsal	900 I (200+700)	Arevalo et al, 1994	S. basiliscus N/C
B-globin	GCGAACTGCACTGYGACAAG	GCTGCCAAGCGGGGGGGGGGGGG	61	intron	sequenced		Dolman and Phillips 2004	S. basiliscus N/S. lewisi
CINOS	GCGGTAAAGCAGGTGAAGAAA	TGAGCATCCAAAGTCTCCAAT	57	CDS, syn	sequenced		Saint 1998	S. basiliscus N/S. lewisi
TPI (intron 5)	TTCTAGCCTATGAACCAGTTTGG	CCTCAACTTGTCATGAACTTCC	57	intron	sequenced		Bell et al., 2010	S. basiliscus N/S. lewisi
CRISP	TGCTGTAGCCTACTGTCCTCAA	TGCTTATCATGCTCGCTAAGTT	57	intron	sequenced		this paper	S. basiliscus N/S. lewisi
RPS8 (intron 3)	CTCITGGGCGTAAGAAAGGAG	CCGCTCATCCTATTTCTTCTG	57	intron	sequenced		Bell et al., 2010	S. basiliscus N/S. lewisi
nho	CCTTGCCTGGACACCCTATGCTG	CAGGAGAGCCTCACATTG	61	intron	sequenced		Dolman and Phillips 2004	S. basiliscus N/S. lewisi
ND4	CACCTATGACTACCAAAAGCTCATGTAGAAGC	CATTACTTTACTTGGATTTGCACCA	57	CDS, syn.	sequenced		Arevalo et al, 1994	S. basiliscus N/S. lewisi

Table 2: The loci used in this study and their associated details.

contact zone	total sequence length (Mb)	total number of SNPs	fixed SNPs	polymorphic SNPs	shared SNPs
L. coggeri N/C	1.09	19884	3510 (17.7%)	16220 (81.6%)	154 (0.8%)
S. basiliscus N/C	1.52	29664	4712 (15.9%)	24798 (83.6%)	206 (0.7%)
C. rubrigularis N/S	1.35	32264	6365 (19.7%)	25693 (79.6%)	369 (1.1%)
L. coggeri C/S	1.42	41618	9260 (22.2%)	31989 (76.9%)	330 (0.8%)

Table 3: **SNP summary.** Details on the number of single nucleotide polymorphisms (SNPs), and their proportions, used in the two-dimensional site frequency spectrum (2D-SFS) for the contact zones analyzed with genomic data.

contact zono	nuc.	mt.	theta	div.	λл	λ./	N	NI.	NI
contact zone	div.	div.	(θ)	time	1/112	1/121	111	112	INA
L. coggeri N/C	0.0046	0.028	3090	3.1 my	0.0268	0.0117	408881	574006	1352453
S. basiliscus N/C	0.0049	0.056	3644	3.4 my	0.0123	0.0112	239822	919316	1352327
C. rubrigularis N/S	0.0058	0.141	3775	4.5 my	0.0112	0.0359	464585	1200178	3 1362782
L. coggeri C/S	0.0075	0.132	4608	5.8 my	0.0097	0.0204	628695	1176557	2227376
S. lewisi/S. basiliscus N	0.0100	0.185	NA	11.4 my	0.0186	0.0040	278501	740017	NA

Table 4: **Parameter estimates for the isolation-with-migration model**, as fit to the lineage-pairs. Populations labelled '1' are the northern lineage in each contact; populations labelled '2' the southern lineage.