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Contact zones provide an excellent arena in which to address questions about how genomic divergence evolves during lineage

divergence. They allow us to both infer patterns of genomic divergence in allopatric populations isolated from introgression and

to characterize patterns of introgression after lineages meet. Thusly motivated, we analyze genome-wide introgression data from

four contact zones in three genera of lizards endemic to the Australian Wet Tropics. These contact zones all formed between

morphologically cryptic lineage-pairs within morphologically defined species, and the lineage-pairs meeting in the contact zones

diverged anywhere from 3.1 to 5.8 million years ago. By characterizing patterns of molecular divergence across an average of

11K genes and fitting geographic clines to an average of 7.5K variants, we characterize how patterns of genomic differentiation

and introgression change through time. Across this range of divergences, we find that genome-wide differentiation increases but

becomes no less heterogeneous. In contrast, we find that introgression heterogeneity decreases dramatically, suggesting that time

helps isolated genomes “congeal.” Thus, this work emphasizes the pivotal role that history plays in driving lineage divergence.
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As lineages diverge, mutation, recombination, selection, drift,

and gene flow interact to shape patterns of genomic divergence.

Understanding this rich interplay of processes can be explored

through two primary, nonmutually exclusive approaches: we can

(1) investigate patterns of genomic variation of lineages falling

along a range of divergences and (2) determine what happens

when differentiated lineages and genomes interact. In this study,

we integrate both approaches to understand the genomic conse-

quences of hybridization between lineages meeting in secondary

contact. Theory predicts this interaction will be structured by

the balance between selection and recombination (Barton 1983).

During hybridization, two differentiated genomes meet, and the

resulting admixed genome is subject to selection, whether due

to environmentally dependent selection against resulting hybrid

phenotypes (Schluter 2001) or intrinsic selection due to genetic

incompatibilities (Dobzhansky 1934; Muller 1942). When selec-

tion against hybrids is strong, disequilibrium remains high across

the genome, and loci cannot introgress even if they have no effect

on hybrid fitness (Barton 1983). However, when selection on hy-

brids is weak, recombination dissociates disequilibrium between

loci, thus allowing loci to introgress at a rate and extent that reflect

the selective effects of that locus and closely linked loci (Baird

1995). Here, the hybrid zone functions as a sieve (Martinsen et al.

2001), reflecting the emerging consensus that most barriers are
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Figure 1. (A) Phylogeny of lineages used in this study; boxes indicate lineage-pairs meeting in hybrid zones. Boxes are labeled with

divergence time estimates for the lineage-pair (Singhal and Moritz 2013). (B) Map of the Australian Wet Tropics; contact zone locations

labeled following colors in A. (C) Basic sampling approach used in study. Transcriptome data from two allopatric “parental” populations

were used to infer patterns of genomic divergence; pooled target capture data from nine hybrid zone populations were used to infer

patterns of introgression.

semi-permeable (Key 1968; Bazykin 1969; Harrison and Larson

2016). As such, hybrid zones both represent the build-up of re-

productive isolation between lineages and the potential for het-

erogeneous break-down of differentiation across the genome, and

dynamics at a hybrid zone are likely to change as lineage-pairs

become more phenotypically and genetically differentiated.

We apply this dual perspective on hybrid zones to a natu-

ral laboratory for comparative analyses of speciation: the suture

zone of the Australian Wet Tropics (AWT). This suture zone, a

geographically restricted area consisting of multiple overlapping

contact zones (Remington 1968), occurs in a narrow strip of rain-

forest in northeastern Australia (Moritz et al. 2009). The repeated

glacial cycles of the Pliocene and Pleistocene led to changing

rainforest distributions, and concordantly, populations of over 20

rainforest species became isolated in refugia and diverged. Since

the Last Glacial Maximum, these populations have expanded out

of the refugia and are now meeting in secondary contacts that

comprise the suture zone (Moritz et al. 2009). Almost all the

lineage-pairs are morphologically cryptic; however, the lineages

span a wide range of genetic divergences allowing us to address

questions about speciation along a continuum. In this work, we

focus on four contact zones that have formed between phylo-

geographic lineages in a clade of ecologically similar skinks that

diverged about 15 mya. These lineage-pairs are Lampropholis

coggeri N/C, Saproscincus basiliscus N/C, Carlia rubrigularis

N/S, and L. coggeri C/S, where N, C, and S designate the North-

ern, Central, and Southern locations of these lineages in the AWT.

Coalescent modeling based on genomic data showed that these

lineage-pairs have divergence times that span from 3.1 million

years ago (mya) to 5.8 mya (Fig. 1A) and all meet in hybrid zones

(Fig. 1B) (Singhal and Moritz 2013).

For each lineage-pair, we use transcriptome data to estimate

patterns of divergence across the genome and exome capture data

to infer geographic clines, and thus introgression, across the con-

tact zone. In doing so, we address a number of questions. First,

as lineage-pairs become older, how do patterns of genomic di-

vergence change? Both verbal models and empirical data predict

that, particularly in relatively young lineages that diverged with

gene flow, there should be considerable heterogeneity in diver-

gence across the genome (Wu 2001). As lineages age, divergence

across the genome should become more homogeneous as muta-

tions fix due to drift and selection (Roux et al. 2016). Although

these lineages likely diverged without gene flow (Singhal and

Moritz 2013), we predict a similar outcome, given heterogeneity

in selection strength and recombination rate across the genome.

Second, how does increased genome-wide differentiation affect

introgression patterns? We predict that in more divergent lineage-

pairs, selection against hybrids will be greater, and thus, the extent

of introgression, both in terms of proportion of genome and spa-

tial range, will be more limited than in less divergent lineage-pairs

(Barton 1983; Barton and Gale 1993). Further, in more divergent

versus less divergent lineage-pairs, linkage disequilibrium will

be more extensive because recombination will be less effective

(Barton and Bengtsson 1986; Pool and Nielsen 2009). Impor-

tantly, in making these predictions, we assume that these contact

zones formed concurrently and that recombination rates are sim-

ilar across the lineages, both reasonable assumptions given the

lineages’ shared history and similar biologies (Moritz et al. 2009;

Williams et al. 2010). Third, how predictable are introgression

patterns across loci in different lineage-pairs? Because introgres-

sion is a function of selection and recombination (Fisher 1950;

Endler 1977; Slatkin 1973), we should be able to use proxies of

these processes (here, the molecular evolution at a given locus) to

predict introgression. Further, if selection and recombination pat-

terns across the genome are correlated across lineages (Janousek

et al. 2012; Singhal et al. 2015; Van Doren et al. 2017; Vijay et al.
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2017), we might predict that introgression patterns across contact

zones should be correlated. Here, we test these predictions by

comparing patterns of introgression to patterns of genomic differ-

entiation within contact zones and patterns of introgression across

homologous loci between contact zones. Through answering these

three questions, we simultaneously compare introgression across

lineage-pairs with a common biogeographic setting yet different

demographic histories and across genes with variable histories

within lineage-pairs.

Methods
SAMPLING

Our approach sampled transcriptome data from two allopatric

populations geographically isolated from the hybrid zone

(“parental” populations) to design exome capture arrays and in-

fer patterns of genomic divergence ((Singhal 2013; Singhal and

Moritz 2013); Fig. 1C, S1, Table S1). To characterize patterns

of introgression, we sampled exome capture data from nine pop-

ulations through each of the four hybrid zone transects. Six of

the populations occurred approximately 10, 2.5, and 1 km north

and south of the hybrid zone center, two occurred at the 20 and

80% tails of the average cline in the hybrid zone, and a final oc-

curred at the average cline center (Singhal and Moritz 2013). In

total, we sampled an average of 133 individuals per contact zone,

and each population consisted of an average of 14.8 individuals

(N = 8 − 17). But for individuals comprising the 10 km popu-

lations for the L. coggeri C/S contact zone, all other individuals

were included in previous studies (Phillips et al. 2004; Singhal

and Moritz 2012, 2013).

DATA COLLECTION

To capture a uniform subset of the genome across populations,

we designed exome capture arrays based on transcriptome data

from populations goeographically isolated from the contact zone

(Fig. S1; (Singhal 2013)). Each array targeted a random set of

exons and genes with putatively interesting biological functions

and with outlier patterns of molecular evolution. To help vali-

date our anonymous pooling approach (see below), we both op-

timized experimental design through simulations (Figs. S2– S4)

and included loci that we had previously genotyped for the same

individuals (Singhal and Moritz 2013). In total, we targeted an

average of 3082 loci and 1.83 Mbp of sequence, and the four

capture arrays had 1120 loci in common. Further details on the

capture array design are available in the Supporting Information.

We used anonymous population pooling (Pool-Seq) to make

libraries because it is an efficient way to generate population ge-

nomic data (Schlötterer et al. 2014). However, pooling prevents

us from calling genotypes and therefore conducting individual-

based analyses such as inferring genomic clines (Gompert and

Buerkle 2012) and estimating levels of linkage disequilibrium be-

yond a sequencing read or read-pair (Feder et al. 2012). For each

individual, we extracted DNA (Aljanabi and Martinez 1997) and

measured DNA concentration using a Qubit dsDNA BR Assay

kit. We then pooled equimolar amounts of DNA per individual

across a population, sonicated the population pools to 150–600

bp using a Bioruptor ultrasonicator (Diagenode), and then pre-

pared uniquely barcoded libraries (Meyer and Kircher 2010). Af-

ter measuring library concentrations using a Qubit, we pooled

libraries by contact to obtain a total of 20μg for exome capture.

We performed capture reactions following the protocol published

in (Hodges et al. 2009) with modifications by (Bi et al. 2012). To

improve capture efficiency, we isolated COT-1 DNA from L. cog-

geri (Trifonov et al. 2009) and used a 50/50 mix of L. coggeri and

commercially purchased chicken COT-1 DNA as our blocking

reagent (Hybloc; Applied Genetics Lab). Following qPCR vali-

dation, each library was sequenced across one 100-bp paired-end

lane on an Illumina HiSeq 2000 at the Vincent Coates Genome

Sequencing Laboratory at University of California, Berkeley.

DATA FILTRATION, ASSEMBLY, AND VARIANT

DISCOVERY

To characterize patterns of genomic divergence in populations

geographically-isolated from the contact zone, we used previ-

ously published variant data from transcriptomes (Singhal and

Moritz 2013). To analyze the exome capture data, we followed

the pipeline for data filtration and assembly published by Bi et al.,

2012. Briefly, raw sequencing reads were trimmed and merged

using the programs cutadapt, trimmomatic, cope, and flash

(Martin 2011; Magoč and Salzberg 2011; Liu et al. 2012; Lohse

et al. 2012). For each lineage-pair, we assembled and annotated

these reads to generate a pseudo-reference genome (PRG) via

ABYSS, cap3, and blat (Huang and Madan 1999; Kent 2002;

Biron et al. 2009). We restricted all downstream analyses to only

those contigs that matched our targets.

To identify variants segregating in the hybrid zones, we

aligned reads from our pooled libraries to the PRG using bowtie2

and then called variants using SAMtools (Langmead et al. 2009;

Li et al. 2009). For this putative set of variable sites, we used

SAMtools mpileup and bcftools to calculate allele frequencies for

each population in the hybrid zone transect (Li et al. 2009) and

to call genotypes for each individual from the geographically iso-

lated populations. The pipeline outlined here is summarized in

Fig. S5.

ANALYSIS

Evaluating success of the experiment
We measured the efficacy of our anonymous pooling strategy and

our overall exome capture experiment. To do so, we compared

allele frequencies estimated from pooled data to those estimated
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from individual genotypes at 10 loci (Singhal and Moritz 2013),

looked at variance in estimated allele frequencies across SNPs

within the nonrecombining mtDNA, and calculated standard mea-

sures of exome capture efficacy (Parla et al. 2011) (see Supple-

mental Information).

Inferring patterns of genomic divergence
Using transcriptome data for the populations geographically dis-

tant from the contact zone, we inferred patterns of genome-wide

molecular evolution and differentiation. For the coding sequence

for each transcript assembled and for each exon targeted on the

array, we calculated four indices: dxy (Nei and Li 1979), da , FST

(Weir and Cockerham 1984), and d N
d S (Yang 2007). All metrics

were calculated across all variants in a given contig, whether a

full transcript or exon.

Inferring patterns of introgression
We used the variant data from the contact zone populations to

infer introgression patterns at each SNP. We first filtered our al-

lele frequency data by setting as missing any estimate based on

less than 50× coverage for a given population (Fig. S2). We then

removed any SNPs that had missing data at >2 of the transect pop-

ulations. We then filtered any SNPs where the difference between

the lowest and greatest allele frequencies across the parental or

10-km populations was pdiff ≤ 0.50. These lowly differentiated

SNPs were filtered because most did not fit clinal patterns. For

the remaining SNPs, we fit sigmoidal clines to allele frequency

data for the central seven populations in each transect. We omitted

the 10-km populations because they were typically off the linear

hybrid zone transect.

We fit only a standard sigmoid cline model to our data

(Barton and Gale 1993) because (1) more complex clinal models,

such as those allowing patterns at the tails of clines to vary, require

denser geographic sampling and (2) previous data from these hy-

brid zones have found that 95% of clines best fit a sigmoidal

model (Phillips et al. 2004; Singhal and Moritz 2013). We fit

this model using a maximum-likelihood function implemented in

Python (Porter et al. 1997). We employed a brute force approach

to explore a wide ranging parameter space for cline center and

width (for both, 100–20,000 m). Further, initial explorations sug-

gested that fitting pmin and pmax from the data generated poorly

fitting clines. As such, we did not fit pmin and pmax ; instead, we

fixed them based on estimated minimum and maximum allele fre-

quencies inferred across all sampled populations. Introgression at

a SNP was categorized as showing a “sweep” pattern if the al-

lele frequency difference between the parental populations was

pdiff ≥ 0.5 and allele frequencies at all populations in the contact

zone–including the 10 km populations–were uniformly between

0 ≤ p ≤ 0.2 or 0.8 ≤ p ≤ 1.0. Such sweep loci could arise ei-

ther due to demographic or selective processes. See Supplemental

Information for further details.

To address our questions, we first profiled patterns of cline

center and width. Second, as a proxy for linkage disequilibrium,

we estimated Moran’s I, a spatial auto-correlation measure that

can be applied across genomic distances (Gompert et al. 2012b;

Parchman et al. 2013). In systems where selection overwhelms

recombination, clinal patterns will be constant across physical

genome distances and will lead to high genomic Moran’s I. Where

selection is weak, recombination will break down linkage disequi-

librium, leading to low genomic Moran’s I. To measure Moran’s

I, we estimated the degree of genomic spatial correlation in cline

width estimates, restricting our analysis to only those targeted ex-

ons for which we inferred more than one cline. Finally, we inves-

tigated the predictability of heterogeneous introgression patterns

across loci across contacts. First, we tested if locus characteristics

can predict locus-specific introgression. To do so, we calculated

correlations between metrics of locus divergence (see Inferring

Patterns of Genomic Divergence) and patterns of introgression

across each contact zone. In addition, we compared patterns of

introgression across functional classes (as determined using Gene

Ontology terms) across contacts. Here, we used the R package

GOstats and the Ensembl BioMart database for A. carolinensis to

calculate the average cline width for genes in a given GO term

(Falcon and Gentleman 2007). Second, we tested the prediction

that, if locus characteristics are conserved across lineages, locus-

specific introgression patterns should also be correlated across

lineage-pairs. To test this, we calculated correlations in cline

widths among homologous loci across each pair of lineage-pairs.

For this final set of analyses, we averaged cline width across both

exons and genes; we estimated a mean of 2.8 and 3.7 clines per

exon and per gene, respectively.

The limitations of our cline estimation approach – that is, re-

lying on pooled data, sampling fewer individuals and demes than

is standard, fixing rather than inferring pmin and pmax , not ac-

counting for Hardy–Weinberg disequilibrium, fitting only a sim-

ple sigmoidal model – all certainly increase the error of locus-

specific estimates of cline width and center (Figs. S2, S3). Fur-

ther, this approach likely means we have miscategorized some

portion of the variants fitting a “sweep” pattern (Figs. S6, S7).

Thus, across all analyses, we refrain from making arguments

about locus-specific introgression patterns, instead focusing on

general patterns across groups of clines and across contact zones.

Results
EFFICACY OF EXOME CAPTURE EXPERIMENT

The exome capture experiments for each contact zone were suc-

cessful; briefly, we acquired high-coverage and high-quality data

for our targets, extended our in-target assembly by 60% by
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Figure 2. Distributions for three measures of genetic divergence – (A) F ST , (B) dxy, and (C) dN/dS – calculated for the coding sequence

of an average of 11K transcripts across each of the four lineage-pairs. Lineage-pairs are listed in the legend in order of most to least

divergent. Rescaled density was calculated by dividing density estimates by the maximum density seen for the distribution. Across

lineage-pair comparisons, the mean of the distribution changes, but the shape of the distribution remains similar.

assembling our reads de novo, and recovered high and consis-

tent specificity (≈65%) (see Supplementary Material for further

details; Figs. S8– S14; Tables S2 and S3).

We also evaluated the success of our anonymous pooling

strategy two ways. First, we compared allele frequencies esti-

mated from pooled data to those estimated from individual-level

genotyping assays (Fig. S15; (Singhal and Moritz 2013)). We

find substantial and significant correlation between estimated and

known allele frequencies (average r = 0.97), suggesting that sam-

pling drift due to anonymous pooling was minimal. Second, we

estimated variance in estimated allele frequencies at highly dif-

ferentiated SNPs in the mitochondrial genome. Because the mi-

tochondrial genome is non-recombining, we expect that all SNPs

that are highly differentiated between parental populations should

have similar allele frequencies within any population along the

transect. We find this is true across most populations and contacts

(Fig. S16).

The approach effectively discovered variation for down-

stream analyses; we identified an average of 57K SNPs after

filtering for low coverage and high missing data (Table S4), and

we fit clines at 1.5K to 13.4K of these SNPs (Fig. S17).

INFERRING PATTERNS OF DIVERGENCE AND

INTROGRESSION

Genome-wide divergence
Comparing patterns of genome-wide differentiation between al-

lopatric populations for all four lineage-pairs results in two clear

patterns. First, across all three metrics and across all lineage-pair

comparisons, patterns of genomic divergence are significantly

correlated across genes (r=0.28–0.54; Table S5). Second, as we

showed previously with ten loci (Singhal and Moritz 2013), mean

values of genomic divergence (measured here as dxy) are highly

correlated with divergence time (r=0.99; P=0.01). Although the

mean of these metrics increases as the lineage-pairs become more

diverged, the shape of the distributions themselves remains sim-

ilar (Fig. 2). These results suggest the heterogeneity in genomic

divergence does not change dramatically across the range of di-

vergence histories sampled here.

Introgression across contacts
We tested the influence of divergence history on introgression

patterns by comparing results across contacts. First, we were able

to infer introgression patterns (cline or sweep) at 25–30% of the

filtered SNPs in C. rubrigularis N/S and L. coggeri C/S and in

7–10% in S. basiliscus N/C and L. coggeri N/C (Fig. S17). This

difference across contact zones is partially because many SNPs

in S. basiliscus N/C and L. coggeri N/C are too undifferentiated

across transect populations to allow cline fitting. Additionally, we

found that about 5% of the variants fit in L. coggeri C/S, 8% in

C. rubrigularis N/S, 16% in L. coggeri N/C and 64% in S. basilis-

cus N/C show a “sweep” pattern (Fig. S17).

The distributions of cline widths across contact zones shows

a clear pattern; both the average spatial extent of introgression

and the variance across loci in introgression extent are reduced as

divergence time between lineage-pairs increases (Fig. 3A, S18,

S19). We see a similar pattern in cline centers (Fig. 3B, S18); the

distribution of cline centers is significantly narrower in the two

more divergent lineage-pairs than the two less divergent lineage-

pairs. Despite the limitations of our cline estimation approach,

cline estimates for these data concord quantitatively with those

estimated previously but for S. basiliscus N/C, for which origi-

nal data were limited (Table S6). Finally, the two less divergent

lineage-pairs have near zero values of genomic Moran’s I be-

yond 100 base pairs, suggesting very limited spatial autocorrela-

tion and, thus, limited linkage disequilibrium (Fig. 3C, S18). The

two more divergent lineage-pairs have extensive autocorrelation

that extends for at least 1 kb, with only moderate declines over

distance.
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Figure 3. Distributions for (A). cline width and (B). cline center across an average of 7.5K clines at contact zones between each of the

four lineage-pairs. C. Moran’s I, a measure of spatial auto-correlation applied to genomic distance, for cline width at each of contact

across an average of 5.3K comparisons for distances ≤500 bp and 810 comparisons for distances >500 bp. Uncertainty in Moran’s I was

estimated by drawing 100 bootstrap samples and recalculating means. Rescaled density was calculated by dividing density estimates by

the maximum density seen for the distribution. A version of this figure showing data from only the 1120 exons shared across all four

contact zones is available at Figure S18. More-divergent lineage pairs show narrower, more coincident clines than less-divergent lineage

pairs.

Figure 4. Pearson correlations in cline widths between all pairwise comparisons of the four sampled contacts. For each hybrid zone,

we averaged cline widths for all variants within a gene to get a gene-wide estimate of cline width, took the natural log of the mean

cline width to normalize data, and then compared widths between homologous loci across hybrid zones. For significant correlations, we

show the linear regression with uncertainty. We see modest but significant correlations in locus-specific introgression extent in three of

the six comparisons.

Introgression across the genome
To test how predictable introgression is within a contact and

among contacts, we first calculated correlations between metrics

of differentiation at a locus – as measured from allopatric popula-

tions – and that locus’s cline width – as measured across the hybrid

zone transect (Table S7). Across three of the four lineage-pairs, we

find a negative correlation between average cline width and FST

per exon. These correlations range from r=−0.09 to r=−0.23

and are stronger in the more divergent contacts. We recover a

similar pattern for two contact zones for another relative measure

of divergence, da . We also recover a weak and unexpectedly posi-

tive relationship between divergence and cline width in L. coggeri

C/S only, and we find no evidence for correlations between d N
d S and

cline width. Second, we find no evidence that putative gene func-

tion influences introgression patterns either in terms of cline width

or “sweep” versus clinal pattern within contact zones or across

EVOLUTION JULY 2017 1 8 9 3
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contact zones (Table S8-10). Finally, comparing introgression pat-

terns gene-by-gene recovers weak but significant correlations in

three out of six possible comparisons (Fig. 4).

Discussion
SYSTEM-SPECIFIC PATTERNS

As shown previously (Singhal and Moritz 2013), the extent of

introgression becomes more limited as these lineage-pairs be-

come more divergent. Our work builds on these results in a few

novel ways. First, earlier work from the L. coggeri C/S hybrid

zone found that clines across ten loci were all exceptionally nar-

row and largely concordant (Singhal and Moritz 2012). Theory

predicts that, unless selection is extremely strong, some clines

will diffuse neutrally, leading to wider and nonconcordant clines

(Barton 1983). Because we originally failed to recover this pat-

tern, we hypothesized that this hybrid zone might not be at equilib-

rium (Singhal and Moritz 2012). In this system, neutral diffusion

should result in cline widths on the order of 6–10 km. By sam-

pling more loci, we found anywhere from 4.6 to 9% of all clines

were this wide or wider, suggesting neutral diffusion is occurring,

albeit rarely. Thus, in contrast to our proposed hypothesis, these

data suggest that this hybrid zone is at tension zone equilibrium;

however, most of the genome is subject to direct or correlated

selection, leading to narrow, and coincident clines.

Second, the clines are much narrower for L. coggeri C/S than

C. rubrigularis N/S (Fig. 3), and given the two species have simi-

lar dispersal rates (Phillips et al. 2004; Singhal and Moritz 2012),

this difference suggests selection against hybrids is stronger for L.

coggeri C/S. However, C. rubrigularis N/S has higher values of

genomic Moran’s I (Fig. 3), a result that suggests linkage disequi-

librium across the genome is higher in this contact zone. While

this pattern could certainly emerge due to stochastic demographic

forces, it also could result from differences in the genomic struc-

ture of segments under selection, such that the individual locus

effect is stronger in C. rubrigularis N/S, leading to more exten-

sive spatial auto-correlation (or, linkage disequilibrium) than in

L. coggeri C/S.

Third, earlier work showed evidence for asymmetric hy-

bridization in both the S. basiliscus N/C and L. coggeri N/C

contact zones (Singhal and Moritz 2013). For both of these hy-

brid zones, it was unclear if the patterns we recovered were from

stochastic or selective processes. However, with a larger data set,

we find that many loci show a “sweep” pattern, indicative of asym-

metric introgression (Fig. S17). Given the large number of loci

recovered showing this pattern, we hypothesize that this asym-

metry is likely due to demographic effects, such as differences in

population density between lineages or patterns of lineage range

expansion (Dasmahapatra et al. 2002; Currat et al. 2008; Dufkova

et al. 2011). Population modeling of the hybrid zone might help

further characterize how demography is impacting introgression

(Fitzpatrick et al. 2010).

IMPLICATIONS FOR SPECIATION

In contrast to expectations from lineages that diverged with gene

flow (Feder et al. 2014), we see no evidence that genome dif-

ferentiation becomes less heterogeneous as lineage-pairs become

more divergent (Fig. 2). Most models for genome divergence dur-

ing speciation describe how the spatial extent of differentiation

across the genome changes through time; we cannot speak to

these patterns because we lack an appropriate genome to scaffold

our variation. Instead, we can compare the shape of the distribu-

tions through time (Fig. 2). The mean and median of divergence

increase with older lineage-pairs, as expected. However, the dis-

tributions are markedly similar across lineage-pairs, despite their

nearly 2× range in divergence times. This likely reflects an inter-

mediate stage in lineage divergence where differentiation remains

relatively heterogeneous for some time (Roux et al. 2016). Fur-

ther, across lineage-pairs, we see significant correlations in pat-

terns of divergence across genes (Table S5), a pattern that has been

recovered across closely related lineages (Nadeau et al. 2012;

Renaut et al. 2014) and more distant comparisons (Van Doren

et al. 2017; Vijay et al. 2017). Because our lineage-pairs

are sampled across three different genera spanning more than

15 million years of evolution, these correlations are unlikely to

result from sorting of standing ancestral variation or introgression

across species borders. Instead, these shared patterns of genomic

differentiation suggest conservation in the strength of linked se-

lection across species genomes. More generally, this pattern indi-

cates these species show a certain predictability in their genetic

divergence through time (Stern and Orgogozo 2009; Burri et al.

2015; Vijay et al. 2017).

While the increasing age of these lineage-pairs has only mod-

est effects on the heterogeneity of genome divergence (Fig. 2),

it impacts heterogeneity in genome-wide introgression more sub-

stantially. By correlating divergence history with introgression,

we are implicitly testing the strength of selection on hybrids,

which acts at the level of the individual and thus can affect a large

portion of the genome. Strong selection against hybrids leads to

extensive linkage disequilibrium in hybrid zones, preventing in-

trogression even at loci that neither have, nor are linked to loci

with, selective effect. We see this pattern in the highly divergent

lineage-pairs L. coggeri C/S and C. rubrigularis N/S, both as

the narrow and limited range of introgression and as the high

spatial auto-correlation in introgression across genomic space

(Fig. 3). These results follow nicely from population genetic

descriptions of speciation as the accumulation of linkage dise-

quilibrium (Felsenstein 1981; Kirkpatrick and Ravigne 2002). In

the lesser divergent lineage-pairs L. coggeri N/C and S. basilis-

cus N/C, selection against hybrids appears to be weaker, and
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accordingly, the extent of introgression is broader and spatial cor-

relation is limited. This leads to the observation that history cleans

up messes, or that time, and the divergence that typically accumu-

lates with time, leads to patterns across the genome congealing

such that two divergent genomes eventually act as completely

isolated units (Turner 1967).

As predicted by (Barton 1983), this work shows that, as

clines become more coincident, the barrier strength increases

quickly, even if the average magnitude of locus-specific selec-

tion decreases. Thus, as we see here, even gradual increases

in genomic divergence can dramatically decrease how perme-

able species boundaries are, and thus, how isolated hybridizing

genomes remain. These findings nicely dovetail with results from

a broader array of taxonomic lineage-pairs (Roux et al. 2016), in

which lineages transition between acting as populations to act-

ing as evolutionary-independent lineages over a “gray zone” of

silent net genomic divergence that extends fourfold. Silent net di-

vergence (da) between our four lineage-pairs ranges from 0.51%

to 0.86%, placing them all within this “gray zone.” We find this

transition occurs even more quickly across this more narrow phy-

logenetic sampling. Da for C. rubrigularis N/S, which shows both

limited introgression and evidence for extensive disequilibrium in

the hybrid zone, is just 1.15× greater than that for the two lesser

divergent lineage pairs.

Although the scale of heterogeneity in introgression de-

creases with the increasing age of lineage-pairs, all contact zones

show evidence for heterogeneous introgression. Introgression ex-

tent across loci varies both due to variance in selection against

introgressing loci and in recombination rates across a genome

(Barton and Bengtsson 1986). Here, we find evidence for some

of the possible factors structuring this variance. Our predictive

ability is modest, particularly given the striking differences in in-

trogression extent across contact zones, and likely both reflects

noise introduced by our approach to cline inference (Figs. S3

and S4) and the complexity of factors structuring introgression in

hybrid zones. As shown by other studies relating genomic diver-

gence to introgression (Gompert et al. 2012a; Nosil et al. 2012),

we see decreased introgression at regions of the genome that are

more highly differentiated among allopatric populations, although

the strength of this correlation is weak (Table S7). Notably, we

only see this correlation with our relative measures of divergence

(FST and da) and not our absolute measure of divergence (dxy)

(Cruickshank and Hahn 2014). These correlations do not appear

to be artifacts of how the data were filtered; we find the same

pattern even when we restrict our analyses to just those clines fit

at the most differentiated variants (i.e., those where pmax − pmin

> 0.9). As has been show in numerous studies (Cruickshank and

Hahn 2014), we find that regions of high relative differentiation

occur in areas of reduced diversity (Table S11). Due to the effects

of linked selection, low recombination rates can lead to lower

levels of diversity (Charlesworth et al. 1993). Because we only

recovered a correlation between introgession extent and relative

differentiation but not absolute differentiation, this suggests that

recombination is playing an important role in structuring intro-

gression patterns. In areas of low recombination, linkage blocks

should be physically larger and thus more likely to have a larger

selective effect in foreign genomic backgrounds than a smaller

linkage block. Thus, lower recombination rates can lead to re-

duced introgression (Slatkin 1975; Kruuk et al. 1999). We find

some preliminary support for this hypothesis (Table S12), but

testing this prediction properly will require a better characteriza-

tion of these species’ recombination landscapes and the genetic

architecture of traits under selection in hybrids.

Given our modest ability to predict patterns of introgression

across the genome based on proxies of selection and recombi-

nation (Table S7), and given that these proxies are correlated

across species (Table S5), we might further expect correlated in-

trogression patterns across contact zones. Indeed, we see low but

significant correlations across genes in cline widths between three

of the six possible comparisons between contacts (Fig. 4). At least

for C. rubrigularis N/S - L. coggeri C/S, this correlation is greater

than expected given that patterns of genomic differentiation are

correlated across lineage-pairs and that patterns of genomic dif-

ferentiation predict introgression (Table S13). In many studies,

multiple transects across the same hybrid zone exhibit consid-

erably different patterns of introgression (Teeter et al. 2010;

Harrison and Larson 2014), which suggests that introgression

patterns can be somewhat idiosyncratic depending on the demog-

raphy and geography at a given transect. In contrast, these results

indicate that common factors structure introgression across these

contacts, even though these contacts occur in different genera.

These factors could include (1) selection against introgression

in highly differentiated loci, given that differentiation is corre-

lated across contacts (Table S5), (2) similar effects of recombi-

nation if the recombination landscape is conserved across taxa

(Janousek et al. 2012), and (3) although we find no evidence for

such effects here (Tables S8, S9), selection against loci involved

in species-specific traits – that is genes involved in gametic iso-

lation. Together, these correlated patterns of both genomic diver-

gence and introgression suggest there is modest predictability to

how genomes diverge and how divergent genomes interact across

the speciation process.

Conclusions
Most studies investigating lineage divergence through genomic

divergence have focused on lineages exchanging large number of

migrants every generation and between which there is marked eco-

logical differentiation (Jones et al. 2012; Nosil 2012; Nosil et al.

2012; Renaut et al. 2013; Harrison and Larson 2014; Malinsky
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et al. 2015). These studies have shown that increased ecological

differentiation, often when combined with geographic isolation,

leads to ever increasing genome-wide differentiation and reduced

heterogeneity in divergence through time. In contrast, this study

focuses on lineages that diverged with minimal gene flow and

that are ecologically and morphologically similar (Singhal and

Moritz 2013); such divergences are an important, and in some

ways understudied, component of Earth’s biodiversity (Bickford

et al. 2006). For these lineages, we find that the evolution of

isolation across the genome is an iterative process.

Further, although heterogeneity in genomic divergence does

not decrease as these lineage-pairs get older, we recover a marked

decrease in the heterogeneity of introgression across the same

time span. As such, our results underscore how time can lead

to genomes “congealing.” Given the current emphasis on how

ecology drives lineage divergence (Schluter 2009; Nosil 2012),

this work reminds us that history plays a pivotal role in species

formation and maintenance, as well.
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BRIEF COMMUNICATION

Table S9: The number of significant Gene Ontology (GO) terms that are shared between contacts.
Table S10: Pearson correlations across average cline widths for Gene Ontology (GO) terms across all six contact comparisons.
Table S11: Spearman correlations between locus-specific measures of relative differentiation (FST ) and diversity (π).
Table S12: Spearman correlations between locus-specific measures of GC∗ and average cline width at that locus.
Table S13: Linear-model fitting results used to determine if the significant correlation in cline widths between contacts (Fig. 4) is merely because cline
widths are correlated to FST (Table S7), which is also correlated between contacts (Table S5).
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