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One of the most compelling patterns in biology is the uneven dis-
tribution of species across regions. For example, the Coral Triangle 
of the Indo-Pacific Ocean is home to more than 3,000 marine fish 
species, whereas the polar oceans are home to just tens of species 
(Rabosky et al., 2018). Several ecological and evolutionary hypothe-
ses—most of which are not mutually exclusive—have been proposed 
to explain this heterogeneity (Schluter & Pennell, 2017). One hypoth-
esis is that geographic variance in species diversity is due to variance 
in the probability of speciation; put simply, some regions have more 
species because speciation is more likely to occur there. Yamasaki 
et al. (2020) explore this hypothesis in the Rhinogobius goby fishes. 
These gobies are distributed across the Ryukyu Archipelago in Japan 
and consist of two forms that differ in morphology, life history, diet 
in the larval stage and distribution: the amphidromous migratory 
form and the landlocked freshwater form (Figure 1). Yamasaki et al. 
use a genetic data set of over 1,400 individuals from nine islands to 
determine how many times the freshwater form has evolved from 
amphidromous ancestors and then to identify the potential drivers 
of its repeated speciation.

Within Rhinogobius gobies, phenotypically similar populations 
occur across multiple isolated islands, leading to substantial taxo-
nomic uncertainty. Whether freshwater populations in each island, 
jointly referred to as Rhinogobius sp. “YB,” belong to the same spe-
cies as the amphidromous form, Rhinogobius brunneus, is unclear. 
Yamasaki et al. used data from 20 nuclear microsatellite loci both to 
clarify species boundaries in this group and to test for reproductive 
isolation between genetically distant groups. These analyses found 
that the two forms correspond to distinct genetic clusters within 
each of the seven islands where both forms co-occur, with minimal 
evidence for hybridization. By genotyping individuals across mor-
photypes and islands, Yamasaki et al. confirmed that the two forms 
on each island were genetically distinct and potentially reproduc-
tively isolated.

Organisms in similar geographic and environmental settings pro-
vide unique opportunities to test whether shared ecological regimes 
lead to repeated evolutionary outcomes (Rosenblum & Harmon, 
2011). Having demonstrated that freshwater gobies within each 
island are genetically distinct from the sympatric amphidromous 
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populations, Yamasaki et al. proceeded to test whether the fresh-
water forms across islands arose from a single origin or due to 
multiple origins. Using microsatellite data, they inferred both the 
phylogenetic relationships and demographic histories of the fresh-
water and amphidromous populations. These analyses supported 
the recurrent evolution of the freshwater ecotype from the amphi-
dromous ecotype. In addition, the demographic analyses inferred 
gene flow during the divergence of the two forms in most of the 
islands. Yamasaki et al. argue this evolutionary history constitutes 
evidence that the freshwater form evolved via ecological speciation. 
Freshwater gobies spend their entire lives in rivers, where currents 
are strong and prey items are large, whereas the larvae of amphi-
dromous gobies grow in the ocean, which has weaker currents and 
smaller prey items. Yamasaki et al. propose that differences be-
tween these two habitats create a selection gradient that may have 
driven divergence. These findings support that the ecotypes seen 
in Rhinogobius gobies constitute evolutionary, ecological and pheno-
typic replicates, suggesting that ecomorphological evolution in this 
system has a deterministic component.

Finally, Yamasaki et al. explore the central premise of this study: 
Why does speciation occur more frequently in some geographic re-
gions than others? In the context of Rhinogobius gobies, why have 
some islands evolved the freshwater form whereas others have not? 
Based on both their own analyses and field surveys, Yamasaki et al. 
first identified on which of 18 islands the freshwater form has inde-
pendently evolved from the amphidromous form. Then, they tested 
whether island area, catchment area, river length or number of wa-
terfalls could predict speciation between these two forms, finding 

that these four measures of ecosystem size predict speciation prob-
ability with substantial explanatory power (r2 > 0.5). These results 
build on a number of studies from diverse organisms, which show 
that greater ecosystem size can lead to increased speciation (e.g. 
Kisel & Barraclough, 2010).

Through this set of analyses, Yamasaki et al. draw connections 
between population-level processes (microevolution) and broad-
scale patterns of diversity (macroevolution), addressing several of 
the challenges in linking across these scales. For example, working 
taxonomies do not always accurately reflect species boundaries, 
particularly in rapidly radiating clades or in cases of cryptic specia-
tion. Fuzzy species boundaries make it difficult to determine species 
geographic ranges and to characterize diversification dynamics, thus 
hampering macroevolutionary studies (Rabosky, 2016). Yamasaki 
et al. avoid this pitfall by delimiting putatively isolated lineages using 
a combination of genetic data and fine-scale geographic sampling. 
Second, they focus on both a narrowly circumscribed biogeographic 
region and phylogenetic scale, in which the processes that drive spe-
ciation are more likely to act consistently across lineages (Graham, 
Storch, & Machac, 2018). This is particularly true in the case of the 
gobies, where multiple sets of populations are independently diverg-
ing across a common ecological axis.

This study also highlights an outstanding challenge for establish-
ing links between microevolution and macroevolution. A potential 
driver of diversification (here, ecosystem size) can impact diversi-
fication rates by influencing different stages of the diversification 
process, often in opposing directions (Harvey, Singhal, & Rabosky, 
2019). For example, as Yamasaki et al. outline, larger ecosystems 

F I G U R E  1   The two forms of 
Rhinogobius gobies from the Ryukyu 
Archipelago in Japan. (Top) River 
habitat where both forms co-occur 
in Iriomotejima Island. (Bottom left) 
A male freshwater form individual 
(Rhinogobius sp. YB) and (Bottom right) 
a male amphidromous form individual 
(Rhinogobius brunneus), both shown in 
their natural habitats. The two forms 
differ in both body size and colour 
patterning [Colour figure can be viewed at 
wileyonlinelibrary.com]
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can support larger populations, enabling population persistence and 
thus increasing speciation rates. On the other hand, larger popula-
tions are less subject to genetic drift and might be less likely to form 
population isolates. In other scenarios, the same driver can both in-
crease speciation and increase extinction (Jablonski, 2008). Directly 
measuring rates of population persistence or isolation could help 
disentangle the mechanism by which these drivers influence diver-
sification (e.g. Singhal et al., 2018). Finally, it is unclear how often 
diverging populations persist long enough for speciation to complete 
(Rabosky, 2016). In the case of the Rhinogobius gobies, time will tell if 
these young, incipient species will persist to become lasting species.

Lastly, future research can build on Yamasaki et al.'s work to ad-
dress another outstanding question: Under what scenarios can we 
compare mechanisms inferred from different geographic contexts 
to inform studies of speciation? For instance, replicated ecological 
speciation in isolated habitats like islands and lakes has become cen-
tral to the idea that evolution has a deterministic component (Losos, 
Jackman, Larson, Queiroz, & Rodriguez-Schettino, 1998). In agree-
ment with this view, the results from Yamasaki et al. suggest that 
habitat similarity in neighbouring islands may lead to predictable 
evolutionary outcomes. However, it is unclear to what extent the 
processes that drive species and trait diversification in islands also 
apply to older and more diverse mainland communities (Schluter, 
1988). Associations between organismal traits and lifestyle appear 
stronger in insular clades than continental clades (e.g. Schaad & Poe, 
2010), as well as in lacustrine clades relative to riverine clades (e.g. 
Joyce et al., 2005). Moreover, certain demographic events like popu-
lation bottlenecks and inbreeding tied to colonization may influence 
genetic and phenotypic divergence in island organisms more than 
in mainland organisms. Future studies can build on the framework 
introduced by Yamasaki et al. to test how geographic context deter-
mines demographic trajectories and the course of parallel evolution.
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